"""
Module for the Hankel alternative view of Koopman (HAVOK) analysis.
References:
- S. L. Brunton, B. W. Brunton, J. L. Proctor, E. Kaiser, and J. N. Kutz,
Chaos as an intermittently forced linear system, Nature Communications, 8
(2017), pp. 1-9.
- S. M. Hirsh, S. M. Ichinaga, S. L. Brunton, J. N. Kutz, and B. W. Brunton,
Structured time-delay models for dynamical systems with connections to
frenet-serret frame, Proceedings of the Royal Society A, 477
(2021). art. 20210097.
"""
import warnings
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.gridspec import GridSpec
from scipy.signal import lsim, StateSpace
from scipy.stats import norm
from .bopdmd import BOPDMD
from .utils import compute_svd, differentiate
[docs]class HAVOK:
"""
Hankel alternative view of Koopman (HAVOK) analysis.
:param svd_rank: the rank for the truncation; if 0, the method computes the
optimal rank and uses it for the truncation; if positive integer, the
method uses the argument for the truncation; if float between 0 and 1,
the rank is the number of the biggest singular values that are needed
to reach the 'energy' specified by `svd_rank`; if -1, the method does
not compute a truncation.
:type svd_rank: int or float
:param delays: the number of consecutive time-shifted copies of the
data to use when building Hankel matrices. Note that if examining an
n-dimensional data set, this means that the resulting Hankel matrix
will contain n * `delays` rows.
:type delays: int
:param lag: the number of time steps between each time-shifted copy of
data in the Hankel matrix. This means that each row of the Hankel
matrix will be separated by a time-step of dt * `lag`.
:type lag: int
:param num_chaos: the number of forcing terms to use in the HAVOK model.
:type num_chaos: int
:param structured: whether to perform standard HAVOK or structured HAVOK
(sHAVOK). If `True`, sHAVOK is performed, otherwise HAVOK is performed.
Note that sHAVOK cannot be performed with a `BOPDMD` model.
:type structured: bool
:param lstsq: method used for computing the HAVOK operator if a DMD method
is not provided. If True, least-squares is used, otherwise the pseudo-
inverse is used. This parameter is ignored if `dmd` is provided.
:type lstsq: bool
:param dmd: DMD instance used to compute the HAVOK operator. If `None`,
least-squares or the pseudo-inverse is used depending on `lstsq`.
:type dmd: DMDBase
"""
def __init__(
self,
svd_rank=0,
delays=10,
lag=1,
num_chaos=1,
structured=False,
lstsq=True,
dmd=None,
):
self._svd_rank = svd_rank
self._delays = delays
self._lag = lag
self._num_chaos = num_chaos
self._structured = structured
self._lstsq = lstsq
self._dmd = dmd
# Keep track of the original data and Hankel matrix.
self._snapshots = None
self._ho_snapshots = None
self._time = None
# Keep track of SVD information.
self._singular_vecs = None
self._singular_vals = None
self._delay_embeddings = None
# Keep track of the full HAVOK operator.
self._havok_operator = None
self._eigenvalues = None
self._r = None
@property
def delays(self):
"""
Get the number of delays used when building Hankel matrices.
:return: the number of Hankel matrix delays.
:rtype: int
"""
return self._delays
@property
def lag(self):
"""
Get the lag used when building Hankel matrices.
:return: the number of time-steps used for Hankel matrix lag.
:rtype: int
"""
return self._lag
@property
def snapshots(self):
"""
Get the input data (time-series or space-flattened).
:return: the matrix that contains the original input data.
:rtype: numpy.ndarray
"""
if self._snapshots is None:
raise ValueError("You need to call fit().")
return np.squeeze(self._snapshots)
@property
def ho_snapshots(self):
"""
Get the time-delay data matrix (i.e. the Hankel matrix).
:return: the matrix that contains the time-delayed data.
:rtype: numpy.ndarray
"""
if self._ho_snapshots is None:
raise ValueError("You need to call fit().")
return self._ho_snapshots
@property
def time(self):
"""
Get the times of the input data.
:return: the vector that contains the times of the input data.
:rtype: numpy.ndarray
"""
if self._time is None:
raise ValueError("You need to call fit().")
return self._time
@property
def modes(self):
"""
Get the U matrix from the SVD of the Hankel matrix. Note that the
columns of this matrix are referred to as the eigen-time-delay modes.
:return: matrix containing the eigen-time-delay modes.
:rtype: numpy.ndarray
"""
if self._singular_vecs is None:
raise ValueError("You need to call fit().")
return self._singular_vecs
@property
def singular_vals(self):
"""
Get the singular value spectrum of the Hankel matrix.
:return: the singular values of the Hankel matrix.
:rtype: numpy.ndarray
"""
if self._singular_vals is None:
raise ValueError("You need to call fit().")
return self._singular_vals
@property
def delay_embeddings(self):
"""
Get all of the HAVOK embeddings (linear dynamics and forcing).
Coordinates are stored as columns of the returned matrix.
Note that this is the V matrix from the SVD of the Hankel matrix.
:return: matrix containing all of the HAVOK embeddings.
:rtype: numpy.ndarray
"""
if self._delay_embeddings is None:
raise ValueError("You need to call fit().")
return self._delay_embeddings
@property
def linear_dynamics(self):
"""
Get the HAVOK embeddings that are governed by linear dynamics.
Coordinates are stored as columns of the returned matrix.
:return: matrix containing the linear HAVOK embeddings.
:rtype: numpy.ndarray
"""
if self._delay_embeddings is None:
raise ValueError("You need to call fit().")
return self._delay_embeddings[:, : -self._num_chaos]
@property
def forcing(self):
"""
Get the HAVOK embeddings that force the linear dynamics.
Coordinates are stored as columns of the returned matrix.
:return: matrix containing the chaotic forcing terms.
:rtype: numpy.ndarray
"""
if self._delay_embeddings is None:
raise ValueError("You need to call fit().")
return self._delay_embeddings[:, -self._num_chaos :]
@property
def operator(self):
"""
Get the full HAVOK regression model,
which contains A, B, and the bad fit.
:return: the full HAVOK regression model.
:rtype: numpy.ndarray
"""
if self._havok_operator is None:
raise ValueError("You need to call fit().")
return self._havok_operator
@property
def A(self):
"""
Get the matrix A in the HAVOK relationship dv/dt = Av + Bu, where v
denotes the linear HAVOK embeddings and u denotes the forcing terms.
:return: linear dynamics matrix A.
:rtype: numpy.ndarray
"""
if self._havok_operator is None:
raise ValueError("You need to call fit().")
return self._havok_operator[: -self._num_chaos, : -self._num_chaos]
@property
def B(self):
"""
Get the matrix B in the HAVOK relationship dv/dt = Av + Bu, where v
denotes the linear HAVOK embeddings and u denotes the forcing terms.
:return: forcing dynamics matrix B.
:rtype: numpy.ndarray
"""
if self._havok_operator is None:
raise ValueError("You need to call fit().")
return self._havok_operator[: -self._num_chaos, -self._num_chaos :]
@property
def eigs(self):
"""
Get the eigenvalues of the linear HAVOK operator A.
:return: the eigenvalues of the operator A.
:rtype: numpy.ndarray
"""
if self._eigenvalues is None:
raise ValueError("You need to call fit().")
return self._eigenvalues
@property
def r(self):
"""
Get the number of HAVOK embeddings utilized by the HAVOK model.
Note that this is essentially the integer rank truncation used.
:return: rank of the HAVOK model.
:rtype: int
"""
if self._r is None:
raise ValueError("You need to call fit().")
return self._r
[docs] def hankel(self, X):
"""
Given a data matrix X as a 1-D or 2-D numpy.ndarray, uses the `delays`
and `lag` attributes to return the data as a 2-D Hankel matrix.
:param X: (m,) or (n, m) array of data.
:type X: numpy.ndarray
:return: Hankel matrix of data.
:rtype: numpy.ndarray
"""
if not isinstance(X, np.ndarray) or X.ndim > 2:
raise ValueError("Data must be a 1-D or 2-D numpy array.")
if X.ndim == 1:
X = X[None]
n, m = X.shape
# Check that the input data contains enough observations.
m_min = self._lag * (self._delays - 1) + 1
if m < m_min:
raise ValueError(
"Not enough snapshots provided for "
f"{self._delays} delays and lag {self._lag}. "
f"Please provide at least {m_min} snapshots."
)
Hm = m - ((self._delays - 1) * self._lag)
H = np.empty((n * self._delays, Hm))
for i in range(self._delays):
H[i * n : (i + 1) * n] = X[:, i * self._lag : i * self._lag + Hm]
return H
[docs] def dehankel(self, H):
"""
Given a Hankel matrix H as a 2-D numpy.ndarray, uses the `delays`
and `lag` attributes to unravel the data in the Hankel matrix.
:param H: 2-D Hankel matrix of data.
:type H: numpy.ndarray
:return: de-Hankeled (m,) or (n, m) array of data.
:rtype: numpy.ndarray
"""
if not isinstance(H, np.ndarray) or H.ndim != 2:
raise ValueError("Data must be a 2-D numpy array.")
Hn, Hm = H.shape
n = int(Hn / self._delays)
m = int(Hm + ((self._delays - 1) * self._lag))
X = np.empty((n, m))
for i in range(self._delays):
X[:, i * self._lag : i * self._lag + Hm] = H[i * n : (i + 1) * n]
return np.squeeze(X)
[docs] def fit(self, X, t):
"""
Perform the HAVOK analysis.
:param X: the input snapshots.
:type X: numpy.ndarray or iterable
:param t: the input time vector or uniform time-step between snapshots.
:type t: {numpy.ndarray, iterable} or {int, float}
"""
# Confirm that delays, lag, and num_chaos are positive integers.
for x in [self._delays, self._lag, self._num_chaos]:
if not isinstance(x, int) or x < 1:
raise ValueError(
"delays, lag, and num_chaos must be positive integers."
)
# Confirm that the input data is 1-D or 2-D.
X = np.squeeze(np.array(X))
if X.ndim > 2:
raise ValueError("Input data must be a 1-D or 2-D array.")
if X.ndim == 1:
X = X[None]
n_samples = X.shape[-1]
# Compute the Hankel matrix.
hankel_matrix = self.hankel(X)
# Check the input time information and set the time vector.
if isinstance(t, (int, float)):
time = np.arange(n_samples) * t
else:
time = np.squeeze(np.array(t))
# Throw error if the time vector is not 1-D or the correct length.
if time.ndim != 1 or len(time) != n_samples:
raise ValueError(
f"Please provide a 1-D array of {n_samples} time values."
)
# Generate warning if the times are not uniformly-spaced.
if not np.allclose(time[1:] - time[:-1], time[1] - time[0]):
warnings.warn(
"Input snapshots are unevenly-spaced in time. "
"Unexpected results may occur because of this."
)
# Set the time step - this is ignored if using BOP-DMD.
dt = time[1] - time[0]
# Perform structured HAVOK (sHAVOK).
if self._structured:
U, s, V = compute_svd(hankel_matrix[:, :-1], self._svd_rank)
self._r = len(s)
V2 = compute_svd(hankel_matrix[:, 1:], self._r)[-1]
V_dot = (V2 - V) / dt
# Perform standard HAVOK.
else:
U, s, V = compute_svd(hankel_matrix, self._svd_rank)
self._r = len(s)
V_dot = differentiate(V.T, dt).T
# Generate an error if too few HAVOK embeddings are being used.
if self._r < self._num_chaos + 1:
raise ValueError(
f"HAVOK is attempting to use r = {self._r} embeddings "
f"when r should be at least {self._num_chaos + 1}. "
"Try increasing the number of delays or providing "
"a positive integer argument for svd_rank."
)
# Use lstsq or pinv to compute the HAVOK operator.
if self._dmd is None:
if self._lstsq:
havok_operator = np.linalg.lstsq(V, V_dot, rcond=None)[0].T
else:
havok_operator = np.linalg.pinv(V).dot(V_dot).T
# Use the provided DMDBase object to compute the operator.
else:
if isinstance(self._dmd, BOPDMD):
self._dmd.fit(V.T, time[: len(V)])
if self._structured:
warnings.warn(
"Structured HAVOK cannot be performed with BOP-DMD. "
"Performing normal HAVOK instead..."
)
else:
self._dmd.fit(V.T, V_dot.T)
# Compute the full system matrix.
havok_operator = np.linalg.multi_dot(
[
self._dmd.modes,
np.diag(self._dmd.eigs),
np.linalg.pinv(self._dmd.modes),
]
)
# Set the input data information.
self._snapshots = X
self._ho_snapshots = hankel_matrix
self._time = time
# Set the SVD information.
self._singular_vecs = U
self._singular_vals = s
self._delay_embeddings = V
# Save the full HAVOK operator.
self._havok_operator = havok_operator
self._eigenvalues = np.linalg.eig(
havok_operator[: -self._num_chaos, : -self._num_chaos]
)[0]
return self
[docs] def predict(self, forcing, time, V0=0):
"""
Use a custom forcing input to make system predictions.
:param forcing: (m, `num_chaos`) array of forcing inputs.
:type forcing: numpy.ndarray
:param time: (m,) array that contains the times that correspond with
the provided forcing inputs. These will also be the times at which
system predictions are computed.
:type time: numpy.ndarray
:param V0: (`r` - `num_chaos`,) array that contains the initial
condition of the linear dynamics. This array should contain the
linear dynamics evaluated at the first time in the `time` array.
If not provided, this initial condition is assumed to be the
initial condition stored in this `HAVOK` model instance. If `V0`
is an int, `V0` is assumed to be the index of the stored linear
dynamics to use as an initial condition.
:type V0: {numpy.ndarray, iterable} or int
:return: system predictions evaluated at the times in `time`.
:rtype: numpy.ndarray
"""
if isinstance(V0, int):
V0 = self.linear_dynamics[V0]
else:
V0 = np.array(V0)
return np.squeeze(
self._embeddings_to_original(
self._compute_embeddings(forcing, time, V0)
)
)
@property
def reconstructed_embeddings(self):
"""
Get the reconstructed time-delay embeddings.
:return: the matrix that contains the reconstructed embeddings.
:rtype: numpy.ndarray
"""
return self._compute_embeddings(
self.forcing,
self._time[: len(self.forcing)],
self.linear_dynamics[0],
)
@property
def reconstructed_data(self):
"""
Get the reconstructed data.
:return: the matrix that contains the reconstructed snapshots.
:rtype: numpy.ndarray
"""
return np.squeeze(
self._embeddings_to_original(self.reconstructed_embeddings)
)
[docs] def compute_threshold(
self,
forcing=0,
p=0.01,
bins=50,
plot=False,
plot_kwargs=None,
):
"""
Use the distribution of forcing terms to determine a threshold at which
the absolute value of the forcing is large enough to be considered
"active". This method uses a histogram of the forcing signal values
and a forcing event probability in order to estimate this threshold.
:param forcing: (m,) array of forcing inputs to be thresholded.
Alternatively, users may provide an integer, which will be used to
index the stored forcing terms. By default, the first forcing term
stored will be used.
:type forcing: {numpy.ndarray, iterable} or int
:param p: desired approximate probability that a forcing event occurs.
Note that `p` must be a float between 0.0 and 1.0, and that smaller
values of `p` will result in larger threshold values. If `p` is an
integer instead, `p` will be used to index candidate thresholds
that are located at the intersection of the forcing term histogram
and a fitted Gaussian distribution.
:type p: int or float
:param bins: `bins` input to the `numpy.histogram` function.
:type bins: int or sequence of scalars or str
:param plot: whether or not to plot the computed histogram of forcing
values and the computed threshold. A Gaussian distribution fitted
to the computed histogram is also plotted if `plot=True`.
:type plot: bool
:param plot_kwargs: optional dictionary of plot parameters. Currently,
one may set the figure size, the y-axis limits, and whether or not
to use a semilogy scale.
:type plot_kwargs: dict
:return: active threshold for the absolute value of the forcing terms.
:rtype: float
"""
if isinstance(forcing, int):
forcing = self.forcing[:, forcing]
else:
forcing = np.array(forcing)
# Compute histogram of the forcing values.
hy, hx = np.histogram(forcing, bins=bins, density=True)
hx = 0.5 * (hx[:-1] + hx[1:]) # get bin centers
hy /= hy.sum()
# Fit a Gaussian to the forcing values.
mu, std = norm.fit(forcing)
gauss = norm.pdf(hx, mu, std)
gauss /= np.sum(gauss)
if isinstance(p, int):
# Use Gaussian intersection.
a = gauss - hy
sgn = np.sign(a)
ind_signchange = np.where(sgn(a[:-1]) * sgn(a[1:]) > 0)[0]
thres_1 = np.abs(hx[ind_signchange])
thres_2 = np.abs(hx[ind_signchange + 1])
threshold_candidates = np.sort(0.5 * (thres_1 + thres_2))
threshold = threshold_candidates[p]
else:
# Use probability p of switching.
ind1 = np.where(np.cumsum(hy) > 0.5 * p)[0][0]
ind2 = np.where(1 - np.cumsum(hy) < 0.5 * p)[0][0]
threshold = 0.5 * (abs(hx[ind1]) + abs(hx[ind2]))
if plot:
# Set the plotting parameters first.
if plot_kwargs is None:
plot_kwargs = {}
if "figsize" not in plot_kwargs:
plot_kwargs["figsize"] = (5, 4)
if "semilogy" not in plot_kwargs:
plot_kwargs["semilogy"] = True
# Plot the histogram, fitted Gaussian, and the threshold.
plt.figure(figsize=plot_kwargs["figsize"])
plt.plot(hx, hy, c="tab:red", label="Forcing", lw=2)
plt.plot(hx, gauss, c="k", label="Gaussian", lw=2, ls="--")
plt.axvline(x=threshold, lw=2, label="Threshold")
plt.axvline(x=-threshold, lw=2)
plt.xlabel("$v_r$")
plt.ylabel("$p$", rotation=0)
plt.legend()
if plot_kwargs["semilogy"]:
plt.semilogy()
if "ylim" in plot_kwargs:
plt.ylim(plot_kwargs["ylim"])
plt.show()
return threshold
[docs] def plot_summary(
self,
num_plot=None,
index_linear=(0, 1, 2),
index_forcing=0,
forcing_threshold=None,
min_jump_dist=None,
true_switch_indices=None,
figsize=(20, 4),
dpi=200,
filename=None,
):
"""
Generate a 5-element summarizing plot that contains the following:
- the time-series used to apply HAVOK
- the full linear operator, which contains A, B, and the bad fit
- the first linear embedding term and the first forcing term
- the HAVOK embeddings, along with active forcing times
- the HAVOK reconstruction of the embeddings.
:param num_plot: The number of time points to plot across all subplots.
By default, all available data points are plotted.
:type num_plot: int
:param index_linear: Tuple of indices of the linear embeddings to be
plotted. May contain either 2 or 3 valid indices. The final two
subplots will be plotted in 2-D or 3-D depending on the number of
indices provided.
:type index_linear: iterable
:param index_forcing: Index of the forcing term to be plotted. Note
that this index refers to indices of the forcing term itself rather
than the full matrix of time-delay embeddings. Hence if 0, the
first forcing term will be plotted, and so on.
:type index_forcing: int
:param forcing_threshold: Threshold value at which the absolute value
of the forcing signal is considered large enough to be "active".
:type forcing_threshold: float
:param min_jump_dist: The minimum number of indices used to separate
distinct forcing events. Decreasing this parameter will lead to
many short forcing events, while increasing this parameter will
lead to fewer longer forcing events.
:type min_jump_dist: int
:param true_switch_indices: Optional vector that contains the indices
at which true chaotic bursting occurs. If provided, true bursting
times are plotted on top of the forcing term.
:type true_switch_indices: numpy.ndarray or iterable
:param figsize: Tuple in inches defining the figure size.
:type figsize: tuple(int, int)
:param dpi: Figure resolution.
:type dpi: int
:param filename: If specified, the plot is saved at `filename`.
:type filename: str
"""
if self._havok_operator is None:
raise ValueError("You need to call fit().")
# Plot as many time points as possible.
if num_plot is None:
num_plot = len(self._delay_embeddings)
# Compute a threshold based on the distribution of all forcing terms.
if forcing_threshold is None:
forcing_threshold = self.compute_threshold(
self.forcing[:, index_forcing]
)
# Use the time step to estimate a reasonable jump.
if min_jump_dist is None:
min_jump_dist = int(0.5 / (self._time[1] - self._time[0]))
# Get index slices at which the forcing is considered active.
forcing = self.forcing[:num_plot, index_forcing]
active_indices = np.arange(num_plot)[
np.abs(forcing) > forcing_threshold
]
active_slices = self._get_index_slices(active_indices, min_jump_dist)
fig = plt.figure(figsize=figsize, dpi=dpi)
gs = GridSpec(2, 5, figure=fig)
ax1 = fig.add_subplot(gs[:, 0])
ax2 = fig.add_subplot(gs[:, 1])
ax3 = fig.add_subplot(gs[0, 2])
ax4 = fig.add_subplot(gs[1, 2])
if len(index_linear) == 3:
ax5 = fig.add_subplot(gs[:, 3], projection="3d")
ax6 = fig.add_subplot(gs[:, 4], projection="3d")
else:
ax5 = fig.add_subplot(gs[:, 3])
ax6 = fig.add_subplot(gs[:, 4])
# (1) plot the time-series data (first coordinate).
ax1.set_title("Time series")
ax1.plot(self._time[:num_plot], self._snapshots[0, :num_plot], c="k")
ax1.set_xlabel("Time")
# (2) plot the HAVOK operator.
ax2.set_title("Regression model")
vmax = np.abs(self._havok_operator.real).max()
fig.colorbar(
ax2.imshow(
self._havok_operator.real,
vmax=vmax,
vmin=-vmax,
cmap="PuOr",
),
fraction=0.046,
pad=0.04,
)
a = len(self._havok_operator) - self._num_chaos - 0.5
ax2.plot([a, a], [-0.5, a], c="k", lw=1)
ax2.axhline(y=a, c="k", lw=1)
ax2.set_xticks([])
ax2.set_yticks([])
# (3) plot the linear HAVOK embeddings (first coordinate).
ax3.set_title("Linear dynamics")
ax3.plot(
self._time[:num_plot],
self.linear_dynamics[:num_plot, 0],
c="tab:blue",
)
ax3.set_xticks([])
ax3.set_yticks([])
# (4) plot the HAVOK forcing term with activation times.
ax4.set_title("Forcing")
ax4.plot(self._time[:num_plot], forcing, c="gray")
ax4.set_xticks([])
ax4.set_yticks([])
for ind1, ind2 in active_slices:
ax4.plot(self._time[ind1:ind2], forcing[ind1:ind2], c="r")
if true_switch_indices is not None:
# Remove indices that fall outside of the plotting range.
outside_indices = np.where(true_switch_indices >= num_plot)[0]
if len(outside_indices) > 0:
true_switch_indices = true_switch_indices[: outside_indices[0]]
ax4.plot(
self._time[:num_plot][true_switch_indices],
np.zeros(len(true_switch_indices)),
"*",
mec="k",
mfc="y",
ms=12,
)
# (5) plot the embedded attractor with activation.
ax5.set_title("Embedded attractor")
linear_dynamics = [
self.linear_dynamics[:num_plot, i] for i in index_linear
]
ax5.plot(*linear_dynamics, c="gray")
for ind1, ind2 in active_slices:
active_dynamics = [
self.linear_dynamics[ind1:ind2, i] for i in index_linear
]
ax5.plot(*active_dynamics, c="r")
ax5.set_axis_off()
# (6) plot the reconstructed attractor.
ax6.set_title("Reconstructed attractor")
reconstruction = [
self.reconstructed_embeddings[:num_plot, i] for i in index_linear
]
ax6.plot(*reconstruction, c="tab:blue")
ax6.set_axis_off()
plt.tight_layout(pad=0.1)
# Save plot if filename is provided.
if filename:
plt.savefig(filename)
plt.close(fig)
else:
plt.show()
[docs] def _compute_embeddings(self, forcing, time, V0):
"""
Helper function that uses the fitted HAVOK model to reconstruct the
time-delay embeddings for a generic forcing term, set of times, and
initial condition for the time-delay embeddings.
"""
# Build a system with the following form:
# dx/dt = Ax + Bu
# y = Cx + Du
C = np.eye(len(self.A))
D = 0.0 * self.B
havok_system = StateSpace(self.A, self.B, C, D)
# Reconstruct the linear dynamics using the HAVOK system.
embeddings = lsim(
havok_system,
U=forcing,
T=time,
X0=V0,
)[1]
return embeddings
[docs] def _embeddings_to_original(self, V):
"""
Helper function that uses SVD and Hankel parameter information stored
in the HAVOK model to convert data in time-delay embedding space back
to the space of the original input data.
"""
U = self._singular_vecs[:, : V.shape[-1]]
s = self._singular_vals[: V.shape[-1]]
H = np.linalg.multi_dot([U, np.diag(s), V.conj().T])
return self.dehankel(H)
[docs] @staticmethod
def _get_index_slices(x, min_jump_dist):
"""
Helper function that, given an array x of indices at which to plot,
computes and returns the beginning and ending index for each
consecutive set of indices.
:Example:
>>> a = np.array([2, 3, 4, 5, 10, 11, 12, 25, 26, 28])
>>> _get_index_slices(a, min_jump_dist=2)
[(2, 5), (10, 12), (25, 28)]
"""
# Get the locations within x where a significant jump occurs.
jumps = x[1:] - x[:-1] > min_jump_dist
jump_starts = np.insert(x[1:][jumps], 0, x[0])
jump_ends = np.append(x[:-1][jumps], x[-1])
index_slices = list(zip(jump_starts, jump_ends))
return index_slices